Epigenetics of trans-generational defense Induction

Some of the best evidence for environmentally induced epigenetic inheritance comes from studies of pathogen infection in A. thaliana. When infected by the common laboratory strain of the bacterial pathogen Pseudomonas syringae (DC3000), A. thaliana plants undergo extensive DNA methylation changes that regulate defense gene expression. Furthermore, some of these induced methylation changes can be transmitted to offspring, trans-generationally ‘priming’ offspring for more effective defense responses when they encounter similar pathogens.

However, plants in nature are typically subject to simultaneous infection by pathogens that induce different defense responses. The defense systems activated by different pathogens may even antagonize each other via hormonal crosstalk. The effects of such co-infection on DNA methylation patterns and trans-generational defense priming remain entirely unexplored, as does the extent of host genetic variation for these epigenetic responses.

To address these issues, we generated A. thaliana lineages with different histories of bacterial infection across generations. This framework enables several key determinations, including the specific DNA methylation changes that are induced in parents by single- versus co-infection, which of these changes are inherited by offspring, and how inherited methylation changes influence offspring defense responses when offspring are infected. To date, we have characterized the genome-wide DNA methylomes of the founding (parental) plants of these lineages, which were infected by the natural bacterial pathogens Pseudomonas syringae (Michigan strain NP29.1A) and P. viridiflava (Michigan strain RMX3.1B),separately and in combination (i.e., co-infection).