All Articles by Rebecca Satterwhite

6 Articles

All Articles by Rebecca Satterwhite

3 Articles

All Articles by Rebecca Satterwhite

2 Articles

All Articles by Rebecca Satterwhite

1 Article

All Articles by Rebecca Satterwhite

1 Article

All Articles by Rebecca Satterwhite

1 Article

All Articles by Rebecca Satterwhite

I am broadly interested in the evolution and structure of host-associated microbial communities. Of the numerous taxa that compose the Arabidopsis microbiome, fungi make up a substantial portion, but studies to date have tended to focus on the bacterial portion. With the help of my labmate Manon Guilberteau, I have cultured over thirty unique fungal species from natural populations of Arabidopsis. By infecting sterile Arabidopsis with specific microbial taxa under tightly controlled environmental conditions, I will investigate the role of fungi in formation of the non-mycorrhizal plant microbiome.

1 Article

All Articles by Rebecca Satterwhite

1 Article

All Articles by Rebecca Satterwhite

I am a phytopathologist in Sichuan Agricultural University, China. My research is mainly focused on the interaction mechanisms between rice fungal pathogens and hosts. I have worked on the cytology, morphology, histologic pathology, genomics and epidemiology of rice sheath blight and kernel smut disease pathogens, and illustrated the effectors and evolution mechanism against hosts. A second line of research deals with defenses against Lepidoptera, Homoptera and nematode pests. We clone plant defensive genes, do functional verification, create transgenic crops but we are also interested in the genomics of Bacillus thuringiensis, a Gram-positive bacteria that often is used as a biological pesticide. In the Bergelson lab, I am investigating the fitness of Pseudomonas syringae among different crops. Pseudomonas syringae is multi host generalist pathogen, it can infect more than 100 families plants. It has a complex life history, including pathogenic, epiphytic and saprophytic phases. The mechanisms of pathogen virulence and host resistance have been well characterized in several model systems. But knowledge about genetic dynamics in ecology is limited. Tn-seq high-throughput parallel sequencing will be used to elucidate the fitness mechanism of Pseudomonas syringae in crops. One can find me in the following website: https://www.researchgate.net/profile/Aiping_Zheng2 http://scholar.google.com/citations?hl=en&user=98cgrigAAAAJ&sortby=pubdate&view_op=list_works and http://wiki.pestinfo.org/wiki/Aiping_Zheng. Selected Publications Lei D, Lin R, Yin C, Li P, Zheng A. Global protein-protein interaction network of rice sheath blight pathogen. J Proteome Res. 2014 Jul 3;13(7):3277-93. doi: 10.1021/pr500069r. Aiping Zheng, Runmao Lin, Danhua Zhang, etc. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications. 2013, 4: 1424 doi:10.1038/ncomms2427. Li S, Li W, Huang B, Cao X, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nature Communications. 2013, 4:2793. doi: 10.1038/ncomms3793. Guan P, Ai P, Dai X, Zhang J, Xu L, Deng Q, Li S, Wang S, Liu H, Wang L, Li P, Zheng A. Complete genome sequence of Bacillus thuringiensis serovar Sichuansis strain MC28. J Bacteriol. 2012 Dec;194(24):6975. doi: 10.1128/JB.01861-12.

1 Article

All Articles by Rebecca Satterwhite

1 Article

Local adaptation and the accessory genome in an endemic plant-pathogen

IMG_6600

Genetic variation is fodder for evolution, and microbial plant-pathogens have it in spades. The Pseudomonas syringae genome is characterized by many rare “accessory” genes that co-occur with “core” genes found in all individuals. In fact, accessory genes outnumber core genes 2:1, even though accessory genes are not essential for survival. Moreover, there is tremendous variation in the gene content of P. syringae; isolates from different crop species, for example, differ in gene content by ~32% (Karasov et al. 2017). Whether these strain-specific genes have adaptive potential remains unknown; they may simply be a consequence of high rates of mutation and lateral gene transfer, even if purifying selection to remove deleterious variants is strong. Another, not mutually exclusive possibility is that accessory genes are maintained by positive selection as pathogens adapt to alternative hosts. Indeed, local adaptation has been hypothesized to explain the presence of rare alleles in P. syringae, which causes major agricultural loss in multiple crop species each year. To address these hypotheses, I have paired a set of P. syringae isolates with their original hosts of isolation. I first test for local adaptation by comparing the in planta fitness of each isolate in its own, and in each other’s, native host. Next, I ask to what degree strain-specific genes influence adaptive patterns by using Tn-seq to track the in planta gene frequencies of each pathogen over the course of infection in each host. From this combination of experiments, we will learn to what extent host ecology influences genome evolution and virulence in P. syringae; this is important not only to inform our understanding of the selective process, but also to fields concerned with the emergence and spread of infectious disease.