All Articles by Talia Karasov

6 Articles

All Articles by Talia Karasov

3 Articles

All Articles by Talia Karasov

2 Articles

All Articles by Talia Karasov

1 Article

All Articles by Talia Karasov

I am broadly interested in the evolution and structure of host-associated microbial communities. Of the numerous taxa that compose the Arabidopsis microbiome, fungi make up a substantial portion, but studies to date have tended to focus on the bacterial portion. With the help of my labmate Manon Guilberteau, I have cultured over thirty unique fungal species from natural populations of Arabidopsis. By infecting sterile Arabidopsis with specific microbial taxa under tightly controlled environmental conditions, I will investigate the role of fungi in formation of the non-mycorrhizal plant microbiome.

1 Article

All Articles by Talia Karasov

1 Article

All Articles by Talia Karasov

I am a phytopathologist in Sichuan Agricultural University, China. My research is mainly focused on the interaction mechanisms between rice fungal pathogens and hosts. I have worked on the cytology, morphology, histologic pathology, genomics and epidemiology of rice sheath blight and kernel smut disease pathogens, and illustrated the effectors and evolution mechanism against hosts. A second line of research deals with defenses against Lepidoptera, Homoptera and nematode pests. We clone plant defensive genes, do functional verification, create transgenic crops but we are also interested in the genomics of Bacillus thuringiensis, a Gram-positive bacteria that often is used as a biological pesticide. In the Bergelson lab, I am investigating the fitness of Pseudomonas syringae among different crops. Pseudomonas syringae is multi host generalist pathogen, it can infect more than 100 families plants. It has a complex life history, including pathogenic, epiphytic and saprophytic phases. The mechanisms of pathogen virulence and host resistance have been well characterized in several model systems. But knowledge about genetic dynamics in ecology is limited. Tn-seq high-throughput parallel sequencing will be used to elucidate the fitness mechanism of Pseudomonas syringae in crops. One can find me in the following website: https://www.researchgate.net/profile/Aiping_Zheng2 http://scholar.google.com/citations?hl=en&user=98cgrigAAAAJ&sortby=pubdate&view_op=list_works and http://wiki.pestinfo.org/wiki/Aiping_Zheng. Selected Publications Lei D, Lin R, Yin C, Li P, Zheng A. Global protein-protein interaction network of rice sheath blight pathogen. J Proteome Res. 2014 Jul 3;13(7):3277-93. doi: 10.1021/pr500069r. Aiping Zheng, Runmao Lin, Danhua Zhang, etc. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications. 2013, 4: 1424 doi:10.1038/ncomms2427. Li S, Li W, Huang B, Cao X, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nature Communications. 2013, 4:2793. doi: 10.1038/ncomms3793. Guan P, Ai P, Dai X, Zhang J, Xu L, Deng Q, Li S, Wang S, Liu H, Wang L, Li P, Zheng A. Complete genome sequence of Bacillus thuringiensis serovar Sichuansis strain MC28. J Bacteriol. 2012 Dec;194(24):6975. doi: 10.1128/JB.01861-12.

1 Article

All Articles by Talia Karasov

1 Article

All Articles by Talia Karasov

1 Article

All Articles by Talia Karasov

1 Article

Recent publication: Maintenance of a resistance polymorphism through diffuse interactions

Durable resistance in agriculture is difficult to achieve, and in fact most resistance factors that are introduced into crops are effective for fewer than five years. In contrast, resistance polymorphisms in nature often persist for thousands, if not millions, of years. Why are these dynamics so different?

In this work,  Talia Karasov with recent members of the Bergelson group and in collaboration with Richard Hudson and Roger Innes investigated how polymorphisms in resistance (R) genes are maintained over long time scales.

Through dissecting a resistance polymorphism in nature the authors show that the complexity inherent in ecological communities is key to its longevity. This suggests that the simplicity of agricultural communities may not be conducive to long-term resistance. Our study highlights the value of understanding natural species interactions for resistance management.

 

Karasov, T. L., Kniskern, J. M., Gao, L., DeYoung, B. J., Ding, J., Dubiella, U., … & Bergelson, J. (2014). The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature, 512(7515), 436-440.

Plant-pathogen coevolution in natural populations

In agriculture, plant resistance to pathogens is typically short-lived, lasting on the order of a few years. In contrast, resistance in natural plant populations seems to persist for millions of years. Why is resistance ephemeral in agriculture, but seemingly indefinite in natural populations? We address this question by studying the coevolution of natural populations of A. thaliana with natural populations of their pathogens using molecular, genomic and ecological  techniques.

Our results led us to a hypothesis about what maintains resistance polymorphisms in natural populations: A. thaliana, unlike plants in agriculture, is rarely challenged with one dominant pathogen. Instead, A. thaliana populations are exposed to thousands of microbes, all at low to intermediate abundances, each with different mechanisms of persistence and/or pathogenicity. A. thaliana seems to evolve resistance in response to this diverse microbial community, and not to one pathogen factor. In short, the heterogeneity of the microbial community selects for heterogeneity in resistance traits.